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Scattering length and effective range in two dimensions; 
application to adsorbed hydrogen atoms 

B J Verhaar, J P H W van den Eijnde, M A J Voermans and M M J 
Schaffrath 
Department of Physics, Eindhoven University of Technology, Eindhoven, The Netherlands 

Received 14 September 1983 

Abstract. The concepts of scattering length (a )  and effective range ( r , )  are introduced in 
two dimensions for an isotropic finite-range potential. Application to mutual scattering 
of pairs of hydrogen atoms in the triplet state adsorbed at a liquid helium surface shows 
the usefulness of a description in terms of two parameters. The values derived for this 
case are a = 2.468~1, and re = 11.620,. 

It is generally believed that the introduction of the concepts of scattering length and 
effective range meets with grave difficulties in two dimensions. Certain logarithmic 
effects in the numerically calculated elastic and inelastic scattering of pairs of slowly 
moving H atoms adsorbed at a liquid helium film (Ahn et a1 1982, 1983, van den 
Eijnde et a1 1983) prompted us to start a study in this direction with the ultimate aim 
of describing the two-dimensional low-energy scattering with simple expressions, as is 
possible in three dimensions. 

We restrict ourselves to the simple case of scattering of a particle with mass p from 
a circularly symmetric potential V (  r )  of finite range r,. Writing a partial wave solution 
in the usual way as ( u ( r ) / & )  exp im4, the radial wave equation for m = O  reads in 
customary notation 

d2u/dr2+[k2- (211/h2) V( r )  +a/  r2]u  = 0. (1) 
A preliminary study (Shaffrath et a1 1982) led us to the following results for the 
phase shift 6( k) = 6,=,( k )  and the radial function U( r ;  k )  beyond r = ro: 

G ( k ) = ( i ~ / l o g  ka)[l +O( l / log  ka)], (2) 

u ( r ;  k) =-(Jk/ log k a ) [ ( ~ r / 2 ) ” *  log r / a+O( l / log  ka) ] ,  (3) 

for k-0,  where a is the scattering length. The approximation corresponding to (2) 
has been mentioned previously by Kagan et a1 (1982). A numerical application to the 
case of two-dimensional H-H scattering, where for all practical purposes the potential 
may be neglected beyond ro = 15U0, confirmed (2), but also showed that the convergence 
to the first term for k + 0 is so slow that the practical usefulness is strongly reduced. 
This is illustrated in figure 1 (dotted and full curves). At energies corresponding to 
temperatures of 0.01 to 0.1 K the deviations are of the order of 10%. In the case of 
the radial wavefunction the convergence to the behaviour described by the first term 
of (3) turned out to be even worse. This slow convergence only enabled us to derive 
a rough estimate for the scattering length. We therefore used the more accurate value 
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Figure 1. Two-dimensional triplet H-H scattering phase-shift (full curve), compared with 
various low-energy approximations; -kp/log ka: dotted curve; -&T/(  y+log &ka): chain 
curve; tan-l[-ta/( y +  log i k a ) ] :  broken curve. The latter approximation including the 
effective-range term is indistinguishable from the full curve on this scale. 

a = 2.468a0, to be derived in the following more satisfactory analysis, to calculate the 
dotted curve in figure 1. 

This slow convergence being related to the slow decrease of l/log ka for decreasing 
k, in a further study (Voermans et a1 1982) we tried to collect all logarithmic effects 
in the zero-order term. This attempt turned out to be successful. The idea is simply 
to replace (2) and (3) by expressions in which the log ka contributions are the same 
as for scattering from a hard (two-)sphere (HS) of radius a. For that case it is easily 
shown that (Morse and Feshbach 1953) 

cot SH,(k) = (No(ka)/Jo(ka)) = (2/.rr)(y+log$ka)+O(k2), (4) 

x (.rrr/2)’/’ (log r/a)[l+O(k’r’)], (5) 
where y is Euler’s constant: y = 0.577 215 665 . . . . 

It can be shown that for the more general potential V ( r )  similar expressions can 
be derived. The argument goes as follows. We compare two solutions of (l), both of 
which satisfy the regularity condition at the origin but which differ in normalisation. 
The first one, u ( r ;  k ) ,  is normalised to amplitude 1 at infinity: 

u ( r ;  k)  =(.rrkr/2)”’(Jo(kr) cos S(k)-N,(kr) sin S ( k ) ) ,  r >  r,. (6) 

u l ( r ;  k)/J;= l + o ( l ) ,  r + O .  (7) 

The normalisation of the second one, u l (  r ;  k ) ,  is prescribed by a normalisation condition 
at the origin: 

In imposing this boundary condition we assume the potential to be well behaved up 
to the origin. If we assume the potential to have a hard core within some radius R,, 
such as is possible in practice for low-energy H-H scattering, we can replace (7) by 
the conditions 

ul(Ro; k) = 0,  u;(R,; k ) = l ,  (8) 
which are also energy independent. Here and in the following the prime denotes radial 
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differentiation. As in the three-dimensional case (Newton 1982) it can be shown (de 
Alfaro and Regge 1965) from the k independence of the boundary condition that 
u l ( r ;  k )  as well as U ;  ( r ;  k )  is for each fixed radius r an entire analytic function of k 2 .  
As a consequence, for k + 0 

(9)  

On the other hand, u l ( i ;  0) can for r > ro always be written as a linear combination 
of the basis solutions: 

u l ( r ;  k )  = u l ( r ;  O)+O(k2) ,  u l ( r ;  k )  = u i ( r ;  O)+O(k2). 

- 
u , ( r ; ~ ) = c u J ; + P J ; l o g r ~ P J r l o g r / a .  (10) 

This defines the two-dimensional scattering length a. 
We relate the normalisations of the two solutions by an unknown function c(  k ) ,  i.e. 

u l ( r ;  k )  = c(k)u(r; k ) .  

Differentiating (6) with respect to r at some r > ro, solving for sin a( k )  and for cos 6 (  k ) ,  
taking the ratio of these expressions and making use of (1  l ) ,  we find 

cot S (  k )  = (2/7r)(y+log $ka)+O(  k2) .  (12) 

We note that in cot 6(k) ,  as well as in sin 6 ( k ) ,  cos 6 ( k )  and tan 6(k) ,  the slow log ka 
dependence can thus be completely included in the zero-order term. Note that the 
approximation $ T / (  y + log $ka)  + n r  for 6(  k )  which one might be inclined to consider 
on the basis of (12) does not show a clear improvement compared with (2), the 
correction containing an O( l/log2 i k a )  contribution. This is again illustrated in figure 1 
(chain curve). 

The approximation for cot S ( k )  based on (12) is much better. It is also illustrated 
in figure 1 (broken curve). The value of the scattering length which turns out to 
correspond to the low-energy behaviour of 6 (  k )  is a = 2 . 4 6 8 ~ ~ .  At 0.1 K the approxi- 
mate phase-shift differs from the exact one by 1 ‘/o and at 0.5 K by 3%. The agreement 
is further improved by including an effective-range k 2  term. In analogy to the usual 
derivation in three dimensions (Newton 1982) it is possible to derive 

cot 6 (  k )  L- (2/ T ) (  y +log tka) + (2n)-’r:k2, 

the effective range re in two dimensions being defined by 

r,’ = 4a I,’ d r ( 2(  r ; k = 0) - $2( r ; k = 0)). 

Here, & ( r ;  k )  is apart from normalisation identical to u ( r ;  k ) :  

$ ( r ;  k )  = u ( r ;  k)/(k1’2a”2 sin 6(k)) ,  (15) 

while 4 ( r ;  k )  is the free wavefunction identical to $ ( r ;  k )  outside ro and in general 
singular at r=0.  With the coefficient 1 / 2 ~  of the k 2  term in (13) the effective range 
is so normalised that its value for scattering from a hard sphere is the corresponding 
radius. For H-H scattering, including the k 2  term with an effective range re = 1 1.62ao, 
we find that we approach the exact phase-shift in figure 1 to within 0.003% at 0.1 K 
and to within 0.7% at 0.5 K. 

We now turn to the radial wavefunction. Especially in view of distorted-wave 
calculations, it is useful to dispose of a simple expression for u ( r ;  k )  with the normalisa- 
tion defined by (6). A k-dependent factor in this expression to be derived for the 
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region beyond r = r, will also determine the k dependence of u ( r ;  k) for r < r,. To 
derive it we substitute expressions for cos S (  k) and sin 6( k) following from (12) in 
(6). The result is 

for k + 0 .  Again the log ka contributions have been included in the zero-order 
expression. It should be noted that the highest k value for which the latter gives a 
satisfactory description depends on r :  the larger r, the smaller the highest k value 
allowed. For the example of H-H scattering (16) describes the radial wavefunction 
at r = 20ao to within 3.5% up to  energies corresponding to 0.1 K. At r = 40a,, on the 
other hand, the maximum energy allowed to obtain a similar maximum deviation 
corresponds to 0.02 K. 

For a fixed r interval contributing to some distorted-wave integral, the k-dependent 
factor f( k) in (16) for the initial channel and a similar one, f( k’), for the final channel 
determine the energy dependence of the distorted-wave matrix-element via the product 
f( k)f( k’). For this method to be practically useful, the range of the interaction causing 
the inelastic transition should be sufficiently small. Otherwise, the above-mentioned 
non-uniform convergence of the radial wavefunctions for decreasing k and k’ will 
limit the energy interval where the energy dependence is predicted satisfactorily to 
rather low energies. An example is the inelastic scattering of pairs of adsorbed H 
atoms, undergoing a transition among the two lowest hyperfine levels in a strong 
magnetic field (Ahn et a1 1982). The transition between these so-called a and b levels, 
which plays a crucial role in the stabilisation of atomic hydrogen, is due to  the 
interatomic magnetic dipole interactions among electron and proton spins. Up  to 
energies in the b channel corresponding to 10 mK the product f( k)f( k’) describes the 
energy dependence within OS%, but at 0.1 K the deviation is already 40%. In this 
example of a long-range inelastic interaction, however, the above-mentioned method 
can still be used with advantage in calculating the energy integral over the lower part 
of the Maxwell-Boltzmann distribution where the radial integrals still show a strong 
energy -dependence. 
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